Background

Introduction of the ACC Responsible Care Process Code of Management Practices has caused many Responsible Care Partner companies to question how this code would apply to their operations.

Most Partner companies are not currently subject to the US Occupational Safety and Health Administration (OSHA) Process Safety Management of Highly Hazardous Chemicals (1910.119) known as PSM and have little experience with the key concepts of a “process based” approach to safety or management systems.

Regardless of the applicability of the OSHA PSM regulations, companies who handle chemicals can take the basic principles of PSM, as included in the ACC RC Process Safety Code and apply them to their operations.

Key principles such as:

- Development of a structured method to access hazards and risk of a process.
- Identification of critical process design and operating information and maintenance of this information.
- Systematic process start up to ensure all affected employees, contractors and other key stakeholders understand the process.
- Process to ensure that changes to the process are reviewed to ensure they do not lessen or undermine the initial safety designed into the process. Ensure that affected stakeholders understand the changes.
- Testing of key process equipment to ensure it operates as designed and as intended.

serve as the basis of a good safety program and form the basis of the Process Safety Code.

Getting Started

The Process Safety Code can be better understood if we reverse the wording from Process Safety to Safety of our Process. This means that we must first define what it is that we do that involves the handling of chemicals. Note that the “highly hazardous chemical” wording is not used in the ACC Process Safety Code. This means the process what we use to handle the chemicals; any chemical is included or should be considered as this code is applied. The code applies to all companies in the Responsible Care program (both members and Partners), inclusion into the
Responsible Care program implies that the organization manufactures or in the case of Partners- handles, stores, transports or is otherwise involved in the chemical value chain.

So the first step is to define what our process is. What is it that we do that involves chemicals? This question is not new to members or Partners and is in fact one of the starting points advocated in the ACC RCMS Implementation workshops. Organizations are encouraged to start by developing a simple process flow diagram of their operations from the starting inputs through the major operational steps to manufacturer or deliver the services that serve as the basis for the business. The process flow diagram or process map also includes those activities that directly support the business and that can have a direct impact on the safety of the employees, the community, property, the environment and the chemicals themselves.

This process flow diagram does not include non-operational areas like accounting or human resources. The diagram serves as a basis for identification of hazards and risks, legal requirements for various steps in the process, steps in the process that require operational control through documented procedures, training and other key parts of the overall EHS&S program and/or the RC Management System.

Another important concept to grasp is that Process Safety is a bit different from typical safety programs. In most safety programs we are focused upon the people who interact with our processes- our employees. We look at how they are selected for the job, how they are trained, the procedures they use to complete the job, personal protective equipment and the behavior of the employees on the job. These will remain vitally important to our operations. The Process Safety code does not take away from these activities.

The concept of process safety that a different approach in that it considers the process (what it is that we do) and looks at how the defined safety condition are maintained and hazards removed from the process. All of the people based safety activity and systems we have in place are important as they interact with the process but things like safe design, ensuring the mechanical integrity of safety systems and equipment, ensuring that changes don’t degrade our intended levels of safety are also important to consider and to control in a systematic way.
Process Safety Code Elements Application

<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Questions to consider as you conduct a Gap Analysis of the Code</th>
</tr>
</thead>
</table>
| 1 | **Leadership and culture.** Senior leadership commitment to creating and valuing a process safety culture. Each company’s leadership will demonstrate a visible and ongoing commitment to overseeing and improving process safety performance. | Does your leadership understand what your process is?
Do they support a culture that values safe operations and continuous performance improvement?
Can they demonstrate how they have supported changes in the operation that involved capital resources, staffing, procedural changes or other support that have improved the safety of the process?
Are they engaged with driving process safety improvement?
Does my leadership encourage input from key stakeholders to make changes to the process that will result in a safety operation?
Does leadership understand what the defined safe operation of our process is or looks like? |
| 2 | **Accountability.** Establishment of process safety accountability within the company. Process safety is integral to business processes and stakeholder expectations. | How is the safety of the process or our operations managed?
Who is responsible for different portions of the process?
Are the responsibilities clearly defined and communicated?
How persons are made accountable for the safe operation of our process? |
| 3 | **Knowledge, expertise and training.** Process to provide that companies and their employees have the required knowledge, expertise, tools and training to manage the process risks of their operations. | How is training done for those employees who are expected to run, manage or operate the various parts of our process?
Return to your process flow diagram and see who is involved at the various steps in the process.
How do you ensure COMPETENCY and not just document training of these employees and management? |
| 4 | **Understanding and prioritization of process safety risks.** Process to systematically understand process safety risks throughout the organization, prioritize actions and allocate resources. | Return to your hazards/risk evaluation work from the RCMS or RC14001 technical specifications.
Do you understand the implications of changes to your process?
If the process involves new equipment or technology, does the organization have the right people; tools and expertise to safety manage the process?
Does the organization understand the implications of changes to the process caused by new regulations, new equipment or new business or services? |
<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Questions to consider as you conduct a Gap Analysis of the Code</th>
</tr>
</thead>
</table>
| 5 | **Comprehensive process safety management system.** Development and implementation of a comprehensive process safety management system to manage process risk and drive continuous improvement. | This element really gets to the core of the Process Safety principles. Does your process safety efforts include:
- Use and application of engineering controls where possible?
- Use of inherently safer technology where possible or feasible?
- Operational controls for key process aspects (SOP’s, Work Instructions, etc.)?
- A Management of Change process to control how changes affect the safe operations of the process?
- Inspection of process equipment and means to ensure the mechanical integrity of the equipment?
- Honest and realistic assessment of process failure scenarios? |
| 6 | **Information sharing.** Systems to actively share relevant process safety knowledge and lessons learned across the organization, including methods for making information available to relevant stakeholders. | How does the organization share identify Best Practices with other parts of the organization? (a bigger challenge to larger organizations)
How are key lessons learned communicated to other similar facilities or employees?
How is information shared with other Partner companies in your business sector? |
| 7 | **Monitoring and improving performance.** A system to monitor, report, review and improve process safety performance. | What data are you collecting on your process operations?
Is the data leading or lagging indicators?
How is the data used and by whom?
Can the data support continuous improvement in the performance of your process? |
Rail Partner Application Example

<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Examples of How This is Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leadership and culture</td>
<td>• Railroad operations are very homogenous from one division or location to another.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The process is very well understood and mature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Senior leadership is very aware of process risks.</td>
</tr>
<tr>
<td>2</td>
<td>Accountability.</td>
<td>• Roles and accountabilities are very well defined.</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge, expertise and training.</td>
<td>• Mature nature of industry has created standardization of equipment, technology and work practices and operational controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Highly regulated environment with much training and competency training mandated by regulations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large amount of regulatory oversight of operations and training.</td>
</tr>
<tr>
<td>4</td>
<td>Understanding and prioritization of process safety risks.</td>
<td>• Risks are well understood within companies and the industry segment.</td>
</tr>
<tr>
<td>5</td>
<td>Comprehensive process safety management system</td>
<td>• Companies are doing much of the specific activity now:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operational controls (Operating Rules and Procedures)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use of inherently safer technology (signals and dispatching systems)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Intensive inspection program (legally required) and mechanical integrity testing programs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Management of change not a terminology normally used in this industry, however most changes are system wide and have large scale implications which force multidisciplinary reviews and project management to implement that delivers process safety considerations for the proposed changes.</td>
</tr>
<tr>
<td>6</td>
<td>Information sharing.</td>
<td>• Excellent within companies. Since the process is the same for entire network the importance of lessons learned and Best practices are quickly applied to other locations on a network wide basis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Very mature industry /segment sharing network through multiple organizations (AAR, ASLRA, NRC, etc.)</td>
</tr>
<tr>
<td>7</td>
<td>Monitoring and improving performance</td>
<td>• Strong monitors of process currently tracked and continuous improvement expected.</td>
</tr>
</tbody>
</table>
Rail Carrier Process Description

The business is the transportation of freight via railroad resources. The process is more than taking the customers shipment from point A to B in that the rail carrier has to maintain the track and infrastructure to provide a safe operating environment. The process includes the safe and effective operation of the communication and signal systems to allow for train to operate without impacting one another. It includes the training and qualifications for employees to conduct safe operation of the equipment to move the customer shipment. The inspection, maintenance and operation of the motive power to accomplish this is also a part of the process.

Overall the process brings together the physical plant (track, bridges, and other structures), the necessary motive power (locomotives), rail cars (shipper railroad owned), the technology (communications, signal systems) and the trained employees to operate the transportation process.

Rail Carrier Management of Change Discussion Examples

Example 1-
A new passing siding is included in the capital budget for a highly used rail corridor. The construction will result in multiple contractors working to complete the project. The work area impacts multiple local community jurisdictions and at grade highway/RR crossings. The project will result in the routing of some traffic over previously little used routes.

- How is the project reviewed to determine the effects on local communicates?
- How is the temporary schedule and route changes reviewed for impact to current operations?
- Once completed, how will the new siding affect train operations and control for the siding?
- How the process change was reviewed, potential hazards identified and risk managed?

What other questions would you ask?

Example 2-
A new industry is opening in an industrial park that is rail served. The industry will be receiving and shipping large volumes of chemicals in tank cars. This will result in additional train service to the park to handle the business. The previous business in this area was limited to non-chemical business in box cars.

- How is the addition of another switch crew/train impact other train operations in the area?
- Will this increase the impact to other industries for service times?
- Will the increase in the chemical traffic change the route designation of the rail carrier?
o Will track inspections and other maintenance change based upon the traffic, the products or the risk or the chemicals being handled?
 o Will the train crews in this area have to receive updated training or refresher training on tank car specific operating rules?

What other questions would you ask?
Bulk Motor Carrier Partner Application Example

<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Examples of How This is Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leadership and culture</td>
<td>- Product mix, equipment type and local operations can vary from location to location.
- Senior leadership is very aware of operations but may not be fully aware for specific process risks.</td>
</tr>
<tr>
<td>2</td>
<td>Accountability.</td>
<td>- Roles and accountabilities are very well defined.</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge, expertise and training.</td>
<td>- Challenges include high employee turnover, past experience and technical ability.
- Training is strong but competency verification varies with company.
- Training varies with equipment type and business.</td>
</tr>
<tr>
<td>4</td>
<td>Understanding and prioritization of process safety risks</td>
<td>- Risk of basic operations is well understood within companies but specific product hazards may not be as well understood.</td>
</tr>
<tr>
<td>5</td>
<td>Comprehensive process safety management system</td>
<td>- Companies are doing some of the specific activity now:
- Operational controls (Operating Rules and Procedures)
- Use of inherently safer technology (e-logs, vehicle monitoring of operating metrics, roll over protection systems)
- Intensive inspection program (legally required) and mechanical integrity testing programs.
- Management of change not a terminology normally used in this industry, however most changes are system wide and have large scale implications which force multidisciplinary reviews and project management to implement that delivers process safety considerations for the proposed changes.</td>
</tr>
<tr>
<td>6</td>
<td>Information sharing.</td>
<td>- Very good within companies. Since the process is the same for entire network the importance of lessons learned and Best Practices are quickly applied to other locations on a network wide basis.
- Very mature industry/segment sharing network through multiple organizations (ATA, NTTC, etc.)</td>
</tr>
<tr>
<td>7</td>
<td>Monitoring and improving performance</td>
<td>- Strong monitors of process currently tracked and continuous improvement expected.</td>
</tr>
</tbody>
</table>
Bulk Motor Carrier Process Description

Transportation of chemicals using highway based transportation system. The bulk motor carrier process involves the initial qualification of the shipment to ensure the company is legally able to transport the material, that the equipment it uses (trailers, hoses etc) are compatible with the material and that the company drivers are able to safely handle the product.

The company must apply tractor resources, trailer equipment and drivers to the shipment to meet the customer needs. Other support services in the overall process include tractor and trailer qualification systems, maintenance and repair resources. The process can also include the cleaning of tank equipment (trailers or ISO containers) with the related pollution control systems and waste disposal concerns.

Bulk Motor Carrier Management of Change Discussion Examples

Example 1

A different manway gasket is found for company trailers that will lower annual maintenance costs for the trailer fleet. The new gasket is a different material than the gasket currently used. The maintenance director believes this is a good idea to change to this type gasket.

- How is the change reviewed and by whom?
- Is individual trailer usage considered in the change?
- How is the change communicated to all company tank trailer maintenance facilities?
- How is the change communicated to customers (if at all)?
- Is product contamination or gasket compatibility considered?

What other questions would you ask?
Example 2

A chemical shipper wants to change the enroute heating standards for their product. The new temperature range is 20°F narrower than past requirements. This will result in more frequent temperature measurements.

- Is this a MOC issue?
- Will this result in a change in the SOP’s or procedures for this load/business?
- How is this communicated to drivers?
- Will new procedures be required to meet this requirement?

What other questions would you ask?

Example 3

The tank wash facility for a bulk motor carrier is changing out its spinner system to reduce the water usage. The new spinner will operate at a much higher pressure range and will operate longer than the older model while using higher temperature water (>50°F hotter).

- How is the change to the spinners reviewed?
- Who determines the hazards introduced by the new equipment?
- How are the SOP’s or procedures changed to reflect the new equipment?
- What operating controls are needed to ensure the higher pressures and temperatures are maintained for the equipment to work effectively?

What other questions would you ask?
Barge Partner Application Example

<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Examples of How This is Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leadership and culture</td>
<td>• Barge operations are very homogenous from one tow or division to another.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The process is very well understood and mature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Senior leadership is very aware of process risks.</td>
</tr>
<tr>
<td>2</td>
<td>Accountability.</td>
<td>• Roles and accountabilities are very well defined.</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge, expertise and training.</td>
<td>• Mature nature of industry has created standardization of equipment, technology and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>work practices and operational controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Highly regulated environment with much training and competency training mandated by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>regulations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large amount of regulatory oversight of operations and training.</td>
</tr>
<tr>
<td>4</td>
<td>Understanding and prioritization of process safety risks.</td>
<td>• Risk is well understood within companies and the industry segment.</td>
</tr>
<tr>
<td>5</td>
<td>Comprehensive process safety management system</td>
<td>• Companies are doing much of the specific activity now:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operational controls (Operating Rules and Procedures)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use of inherently safer technology? What has been added to the normal operations?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Intensive inspection program (legally required) and mechanical integrity testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>programs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Management of change not a terminology normally used in this industry.</td>
</tr>
<tr>
<td>6</td>
<td>Information sharing.</td>
<td>• Excellent within companies. Since the process is the same for entire network the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>importance of lessons learned and Best practices are quickly applied to other locations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on a network wide basis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Very mature industry/segment sharing network through industry organizations (AWO, etc.)</td>
</tr>
<tr>
<td>7</td>
<td>Monitoring and improving performance</td>
<td>• Strong monitors of process currently tracked and continuous improvement expected.</td>
</tr>
</tbody>
</table>
Barge Carrier Process Description

Barge operations involve the movement of chemical in bulk by waterways using barges and tow boats. The barges may be barge operator or shipper owned/leased equipment. The process includes the qualification of the customer’s product and dock facilities to ensure the barge operator can safely handle the shipment. The barge operation supplies a tow boat that is staffed with a trained and qualified crew. The crew operates the tow boat and assigned barge string along a water based route that includes other shipment deliveries and pickups during the route.

The process may include the maintenance and fueling of the tow boat equipment, training of the crew members, and maintenance of the barges themselves.

Barge Carrier Management of Change Examples

Example 1
A chemical shipper has a capital project to update their docking cells and unloading facilities. The new facility is different than the older facility in terms of length and off load capacity.

- How is this change normally communicated to the barge companies?
- How is this information communicated to the towboat crews?
- Are changes in the SOP’s or Work Instructions needed for this facility?
- How is training done for the crews who will work at this location?

What other questions would you ask?

Example 2
River water levels are at an all time low. Operations are continuing but require different navigation to avoid hazards.

- How is the change communicated to the fleet?
- What is the involvement of other stakeholders in the changes to the operations?
- Is additional training needed?

What other questions would you ask?
<table>
<thead>
<tr>
<th>Code</th>
<th>Element Requirement</th>
<th>Examples of How This is Done</th>
</tr>
</thead>
</table>
| 1 | Leadership and culture | • LTL motor carrier operations are very homogenous from one division or location to another.
• The process is very well understood and mature.
• Senior leadership is very aware of process risks. |
| 2 | Accountability | • Roles and accountabilities are very well defined. |
| 3 | Knowledge, expertise and training. | • Driver shortages make finding experienced and qualified drivers a challenge.
• Terminal and dock operations usually use part time employees which makes training an ongoing challenge. Terminal management stability is a key to maintain the terminal operational knowledge. |
| 4 | Understanding and prioritization of process safety risks | • Risks are well understood within company. |
| 5 | Comprehensive process safety management system | • Companies are doing much of the specific activity now:
• Operational controls (Operating Rules and Procedures)
• Use of technology for driver operating reports (hard stops, speeds, etc.).
• Management of change not a terminology normally used in this industry. Changes to shipper freight (volume, packaging) are a constant issue. |
| 6 | Information sharing. | • Excellent within companies. Since the process is the same for entire network the importance of lessons learned and Best practices are quickly applied to other locations on a network wide basis.
• Very mature industry/segment sharing network through multiple organizations (ATA, state trucking associations, insurance brokers) |
| 7 | Monitoring and improving performance | • Strong monitors of process currently tracked and continuous improvement expected. |
LTL Motor Carrier Process Description

Most LTL (Less Than Truckload) companies operate using a hub and spoke model. Terminals have drivers which serve a geographical area or route within several hours of the terminal. These drivers are making shipment pickups and deliveries to local shippers. During the day information is collected about the shipments being picked up to begin the planning process for the terminal outbound or line haul loads later that day or evening. At the terminal the inbound local loads are sorted into loads that are leaving the area and will be sent out using line haul or road drivers who operate between terminals. As the line haul loads arrive into the local terminals their loads area broken up and sorted to the local delivery drivers for the next day’s operations.

The process involves highway operations, materials handling at the terminals and final delivery locations. Equipment maintenance is a part of the process to support the business with safe and maintained tractors, equipment and materials handling systems.

LTL Operations Management of Change

Example 1
A shipper wants to begin shipping large volumes of chemicals from their plant and wants to load the trailer over the period of a day. The trailer will only be 2/3’s full and could be used for other freight. The chemical being shipped is prohibited from being near food products during shipment.

- How would this business be reviewed prior to starting?
- How would the local terminal handle this requirement when preparing outbound line haul loads from the terminal to ensure food products are not loaded into the trailers remaining space?
- What additional procedures or training would be developed for the local terminal?

What other questions would you ask?

Example 2
Changes to the federal hours of service (HOS) regulations will make daily driving hours and rest period change. The company uses electronic HOS logging technology.

- How is the changes reviewed against company operating schedules and plans?
- How are the changes communicated to dispatchers and load planning staff?
- How are the changes introduced and communicated to drivers?
- How are the changes monitored to ensure compliance before a violation occurs?
Terminal Partner Application Example

<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Examples of How This is Done</th>
</tr>
</thead>
</table>
| 1 | Leadership and culture | • Terminals are very similar within a company from terminal to terminal based upon procedures and policies.
• Operation of the terminals is usually the same from location to location.
• The process is very well understood and mature.
• Senior leadership is very aware of process risks. |
| 2 | Accountability. | • Roles and accountabilities are very well defined. |
| 3 | Knowledge, expertise and training. | • Since terminal operations involve fixed process equipment good technical information is available for the system (materials of construction, maintenance procedures etc.)
• Fixed location allows for stable workforce and ability to build experience. |
| 4 | Understanding and prioritization of process safety risks. | • Risks are well understood within company and include process to qualify new business and handling prior to beginning new product operations.
• Strong involvement from customers to vet terminals prior to beginning business. |
| 5 | Comprehensive process safety management system | • Many terminal companies are covered by OSHA PSM regulations and are doing much of the specific activity now:
• Operational controls (Operating Procedures, SOP’s)
• Inspection following industry standards and BMP’s.
• Mechanical integrity
• Management of Change for new products or equipment.
• Use of technology for tank monitoring, pumps and valve automation programs. |
| 6 | Information sharing. | • Excellent within companies. Since the process is the same for entire network the importance of lessons learned and Best practices are quickly applied to other locations on a network wide basis.
• Very mature industry /segment sharing network. |
| 7 | Monitoring and improving performance | • Strong monitors of process currently tracked and continuous improvement expected. |
Terminal Process Description

Terminal companies supply customers with storage for products using bulk tank facilities. The terminal can receive product using barge, rail, bulk truck or pipelines and may release products from the terminal using the same transportation networks. The terminal may offer other services such as product blending, inventory management and logistic activity.

The terminal process includes the inspection, maintenance and testing of product handling systems such as pumps, meters, tanks and related piping networks and loading/unloading racks for rail and truck equipment. The process also includes pollution control systems for air emission control equipment, storm and process water treatment and handling and waste disposal.

Terminal Management of Change Examples

Example 1
A customer wants to use the terminal to store and dispense a flammable liquid that has specific inhibitor requirements. The terminal will have to take samples on a routine basis and add inhibitor solution to the storage tanks to maintain specific levels.

- How is the new product reviewed for compatibility with the terminal's current equipment and capabilities?
- How is the testing issue handled?
- Are new operating procedures required for this product and related testing?
- How is this product reviewed against current air permit conditions?
- Will this product require modification to the emergency response plan and interaction with the LEPC?
- How are employees trained on the new product and its hazards?

What other questions would you ask?

Example 2
A new truck loading spot is being proposed for the terminal. It will require an electrically driven pump and changes to the vapor return line system. This new loading spot is adjacent to other process handling equipment (liquid headers and storm water containment).

- How is the project reviewed and by who to identify new hazards and risk to the terminal?
- Will process equipment be protected from this new vehicle traffic?
- Will facility Piping and Instrumentation Diagrams (P&ID’s) be updated?
- Who is doing the construction of the new facility? Are they a vetted and approved contractor for the terminal?

What other questions would you ask?
Logistics Provider Partner Application Example

<table>
<thead>
<tr>
<th>Code Element</th>
<th>Element Requirement</th>
<th>Examples of How This is Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leadership and culture</td>
<td>- As a non-asset based company, operational safety issues are sometimes not well understood by senior leadership.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Primary company focus is usually technology and business process focused.</td>
</tr>
<tr>
<td>2</td>
<td>Accountability.</td>
<td>- Roles and accountabilities may not be very well defined for process safety issues.</td>
</tr>
<tr>
<td>3</td>
<td>Knowledge, expertise and training.</td>
<td>- Employee knowledge in the business process is very strong.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Knowledge of process safety risks is not well defined or understood.</td>
</tr>
<tr>
<td>4</td>
<td>Understanding and prioritization of process safety risks</td>
<td>- Risks are usually identified with the contracted company who is doing the work, providing the service or other physical function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Not associated with the logistics operation.</td>
</tr>
<tr>
<td>5</td>
<td>Comprehensive process safety management system</td>
<td>- 3PL companies may have business practices that actually fit several of the requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- As a non-asset service provider several of these components do not apply-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- inspection of equipment,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- design codes and industry standards,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- P&ID’s,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mechanical integrity issues.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Management of change not a terminology normally used in this industry. Changes to customer requirements and products should trigger some form of MOC process.</td>
</tr>
<tr>
<td>6</td>
<td>Information sharing.</td>
<td>- Excellent within companies. Since the process is the same for entire network the importance of lessons learned and Best practices are quickly applied to other locations on a network wide basis.</td>
</tr>
<tr>
<td>7</td>
<td>Monitoring and improving performance</td>
<td>- Strong monitors of process currently tracked usually from a service delivery and quality perspective.</td>
</tr>
</tbody>
</table>
Logistics /3PL Process Description

3PL companies act as travel agents for chemical shipments. Based upon customers requirements the 3PL selects carriers, terminals, warehouses and other transportation related services to service the customer shipment. The 3PL may provide shipment tracking, expediting and customers and other brokering services based upon the shipment lane or route.

The process includes identification of the product, the shipper requirements, regulatory requirements and physical condition of the shipment (size, volume, special handling requirements etc.) and applying the right resources to provide the necessary services.

Logistics / 3PL Management of Change Examples

Example 1
The shipper is changing from 55 gallon drums for shipments to reusable tote containers for domestic shipments. They want to accumulate the empty totes and ship them back in a full truckload amount.

- How is this change reviewed by the 3PL company?
- What new hazards does this bring to the handling of the larger and heavier containers?
- How is this change communicated to the motor carriers used in this business?
- How would the 3PL handle the aggregation of the empty totes for return shipment?

What other questions would you ask?

Example 2
A shipper has changed the PPE requirements to be used during the offloading of their product when shipped in bulk trailers. They now require the drivers to use a respirator.

- How is this change communicated to current bulk motor carriers handling this business?
- How can the 3PL be sure that this requirement is being met by the motor carrier?
- How can motor carrier concerns or suggestions be used to design a better handling method?
- What is the role of the 3PL in developing a better handling system?

What other questions would you ask?